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Abstract 

A two-parameter family of distributions is generated by considering the random 
variable 

where the xi are independent and distributed N (0, u2). For u2 = 1, y, is said to have 
the chi-square distribution with n degrees of freedom. This report is concerned 
with the use of sample quantiles in solving the following estimation problems 
associated with this distribution: 

(1) Estimating a2 when n is known. 

(2) Estimating n when u2 = 1. 

(3) Estimating the product nu2 when neither n nor a2 is known. 

(4) Estimating both n and a2 when neither is known. 

(5)  Estimating a for the special cases where v 2  = and v3 = 

Monte Carlo methods are used in applying the various estimators, and the results 
are listed. 
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Estimating the Parameters of the Chi-Square and 

Some Related Distributions Using Quantiles 

I .  lnliroductiol~ With respect to this distribution and assuming that n is 
known and the sample size is large, we first constnret 

This report presents additional results of the continuing 
asymptotically optimum and unbiased quantile estimators 

itlvestigation into the use of sample quantiles for data 
of 2 ,  using k quantiles, for k = 1,2, . . . ,8 and for 

compression of space telemetry. Most of the previous n = 1 , 2 , .  . . ,32,34, . . . ,40,50,60. The egciendes of 
results of this investigation are given in Refs. 1-4. Refer- 

the quantile estimators are also determined, for each value ence 1 deals with the problem of efficiently estimating 
of n and k, relative to the maximum-likelihood (M.L.) 

the parameters of a normal distribution, using up to 20 
estimators. 

quantiles, and also describes two goodness-of-fit tests, each - 
using four quantiles. References 2-4 are concerned with 
hypothesis testing and estimation of the correlation coeffi- 
cient of a bivariate normal distribution, using up to eight 
quantiles. In Ref. 5, estimators are given for the param- 
eters of an extreme-value distribution, using up to 10 
quantiles. 

In this report, we consider initially the distribution of 
the sum of the squares of n independent, normally dis- 
tributed random variables, each with zero mean and vari- 
ance U< For a" 1, this distribution is known as the 
chi-square (x2) distribution with n degrees of freedom 
(d.f.). For identification purposes, we will designate the 
generalized form as the X"istribution with a scale fac- 
tor (a2). 

Estimating the power of white Gaussian noise is equiv- 
alent to estimating a2 for a x2 distri'bution with a. scale 
factor. The problem of estimating u2 also arises in nosr- 
coherent communication analysis. 

The x2 distribution has only one parameter, n. When n 
is unknown, it must be estimated in order for the diistri- 
bution to be completely specified. Accordingliy, quantile 
estimators of n are constructed using up to six quantiles. 
For an assumed sample size of rn = 100, the probabilii~ 
that the quantile estimate of n will equal n is compared 
with the same probability when the M.L. estisnatsr is 
used, for n = 1,2, . . . ,5,10,15, . . . ,TO. The probabil- 
ity that each quantile estimate of n v71iQP differ from n by 
at most one is also given. 
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The estimation of the length of noise bursts is equiva- If g (x) is differentiable in some neighborhood of each 
lent to estimating the d.f. of a x2 distribution. quantile value considered, it has been shown (Ref. 6) that 

the joint distribution of any number of quantiles is asymp- 
FOP thc case where both n and u2 are unknown, quantile totically normal as n + oo and that, asymptotically, 

estimators of the mean, nu2, using from two to six quan- 
tiles, are constructed from the optimum estimators of u2 

for 7a. = 20. W t h  this estimate, a, and the same quan- E (2,) = t o  
tiles used in estimating it, an unusual type of quantile 
estimator is constructed, using four and six quantiles, in 
order to estimate n and u2 individually. var (2,) = P(1-  P) 

mg"($) 

Two distributions which are related to the xqistribu- 
tion with a scale factor are of special practical interest. 
These are the square roots of the x2 distributions with a 
scale factor and two and three d.f. Asymptotically opti- 
mum and unbiased estimators of u are constructed for where p12 is the conelation between z,l and z,z and 
each case, using u~p to six quantiles. The efficiencies of < p2. 
these estimators are also determined relative to the M.L. 
cstirnators. 

Throughout this report, we will denote by k, (x) and 
Finally, a Monte Carlo study was made for each type K n  (x) the density function and distribution function, 

of estimator, and the results were listed. respectively, of the x"istribution with n d.f., given by 

!I, Review of Qu~crntiles 

To define a quantile, consider m independent values 
XI, X ,  . . . , x,, taken from a distribution of a continuous & (x) = Jx  kn (t) dt 
type with distribution function G(x) and density func- o 

tion g (x). The pth quantile, or the quantile of order p of 
the distribution or population, denoted by ti is defined The density function of the xz distribution with a scale 
as the root of the equation G ([,) = p; that is, factor is easily derived, and is given by 

dG (x) =l:g (x) dx 1 1 
-.kn(:) = Xn/2-1 e-x/2uz ,XTO 

The corresponding sample quantile x, is defined as fol- 
lows: If the sample values are arranged in non-decreasing ~ h ~ ~ ,  one has 
order of magnitude 

- - 
~ ( 1 )  7 ~ ( 2 )  < . . < X(m) 

then x( ,  , is called ithe ith-order statistic and 

ZP = X ( [ ~ P I + I )  

Hence, one sees that, asymptotically, if x, is a sample 
quantile of order p from a x2 distribution with a scale 
factor, then 

where [mp] is the greatest integer 7 mp. E (2,) = 5; = 
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and, since of minimizing var (S2)  with respect to 5,. Accordingly, 
one has 

var (2,) = . " P ( ~ - P )  
mki  ( % P )  

so that the moments of the sample quantiles of a x2 dis- 
tribution with a scale factor are expressable in terms of 
the x 2  distribution. 

Then, setting var (G2)/aCp = 0 results in 

When t (> 1) quantiles are being considered, the sample Cpkm ( C p )  ( 1  - 2 ~ )  - P ( 1  - P )  (n - ip) = 0 (21 

quantiles will be denoted as z i  of order pi, i = 1,2 ,  . . . , t 
and p i  < pi for i < j. The corresponding population quan- Solving Eq. ( 2 )  for p gives the optimum order of 
tile of the xdistribution will be denoted by t i .  single sample quantile used in estimating 0'. 

For k > 1, from Eq. ( 1 )  one has 
I I I .  Estimating the Parameter o h f  a ~Wistribution 

With a Scale Factor, Using Quantiles IC 

E (a2) = a2 PiCi  
The quantile estimators of u2 will be constructed as i =I 

linear combinations of k quantiles of the form 
and a2 will be unbiased if we put 

where the pi and the orders of the quantiles will be chosen 
so as to satisfy simultaneously the following two condi- 
tions : 

( 1 )  The expected value of G2 ( E  (2)) = u2. 

( 2 )  Var (^a2) = minimum. 

Beginning with one quantile, one has, for a given value 
of n and a fixed value of p, 

The minimization of var (G2) will be aceornp8ished in two 
steps. Since Pk can now be expressed as 

we first determine the values of the remaining which 
will minimize var (2) for a fixed set of the pi. 

Let a4 denote the variance of x i  and ai, the covariance 
between xi and xi. Then one has 

k k - 1  7c 
It is evident that in order to satisfy the first condition, var(G2) = 2 , G ' i u ~ - t - 2 ~  2: , B i P j w i j  
we must put ,8 = 1 / [ ,  The variance of C 9 s  given by i = 1  i = 1  j= i .+ l  

(41 

Substituting in Eq. (4) the value of /& given in Eq. (3)  
var ($2) = @'p (I  - P )  and then setting the partial derivatives of var (G2) with 

m G  k i  (&) respect to pi equal to zero for i = 1,2 ,  . . . , k - 1 results 
in k - 1 linear equations of the form 

so that the second condition will be satisfied if the order 
of the quantile is chosen to minimize var ('2)). It is more k - 1  

convenient, however, to adopt the equivalent procedure Z A i j p i = b ; ,  i = 1 , 2 ; . . , k - 1  
j=1 
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The values of the ,Bi obtained from the above set of k - 1 tion with a scale factor is nu2, the estimators given in 
linear equations and Eq. (3) are those which minimize Refs. 1 and 7 should be divided by n to obtain the esti- 
var (22) for the fixed set of pi. Then, by varying the pi mate of a'. 
and determining the values of the Pi for each variation 
by the above procedure, the set of pi and pi are obtained For n = 2, the density function of a x 2  distribution with 
for which var 4G2) is an absolute minimum and E ($) = a? a scale factor is 

Using all the an sample values, the M.L. estimator of a2 

and its variance for each n are given by 

which is the density of an exponential distribution of the 
form 

2~~ 
var (F2) = - 

nm 
where, in this case, h = 1/2a2. Now, if we denote by 'i 
and xi, i = 1,2, . . . , k, the population and sample quan- 

The efficiency of Q is defined for all values of k and n as tiles, respectively, of an exponential distribution with an 
unknown parameter A, of the same orders as given in 

2 ~ *  
eff (G2) = Tables 1-5 for n = 2, then if Ci again denotes the cor- 

nm var ( 2 )  responding population quantile of the x2 distribution with 
two d.f., one has 

Tables 11-5 give the optimum orders of the quantiles 
and the eoe6cients to be used in the estimators Ci=2hC i = 1 , 2 , . . . , k  

for k = 9(1)6 and n = 1(1)32(2)40(10)60. The efficiencies 
are dso given. 

and if we let 

then 

For intermediate values of n, interpolation should give k 

good results. For 60 < n 7 70, extrapolation should also 
give good results. For n > 70, since the x2 distribution 

k 

E (a) = 2 pPiE = 
% = I  

approaches normality as n -+ w , one can use the estimators i = 1  

of the mean of a normal distribution given in Ref. 1 
(p. 104) for k = 1,2,4, . . . ,20. For k = 3,5, . . . ,9, the Thus, multiplying by two the estimators of a q o r  n = 2 
estimators given in Ref. 7 (p. 279) can be used. I t  should gives the optimum, unbiased k-quantile estimator of 1/h 
bc noted, however, that since the mean of a x2 distribu- of the exponential distribution for each value of k. 
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Table 1. Optimum orders p i ,  coefficients Pi, and efficiencies of quantile estimators a ~ f  a2 

for a X2 distribution with a scale factor and n d.f. of the form 

Eff (2') 
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Table 2. Optimum orders pi, coefficients Pi, and efficiencies of quantile estimators of a' for a 
X' distribution with a scale factor and n d.f., 

Eff  G21 

0.8943 
0.891 1 
0.8892 
0.8880 
0.8871 
0.8865 
0.8860 
0.8857 
0.8854 
0.8851 
0.8849 
0.8847 
0.8846 
0.8844 
0.8843 
0.8842 
0.8841 
0.8840 
0.8840 
0.8839 
0.8838 
0.8838 
0.8837 
0.8837 
0.8836 
0.8836 
0.8836 
0.8835 
0.8835 
0.8835 
0.8834 
0.8834 
0.8834 
0.8833 
0.8833 
0.8832 
0.8831 
0.8830 
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Table 3. Optimum orders p i ,  coefficients Pi, and efficiencies of quantile estimators of a' for a 

X 2  distribution with a scale factor and n d.f., 
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Table 4. Optimum orders pi, coefficients Pi, and efficiencies of quantile estimators of over a 

x2 distribution with a scale factor and n d.f., 

Eff ta2) 
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Table 5. Optimum orders pi ,  coefficients Pi, and efficiencies of quantile estimators of uL for a 
XVistribution with a scale factor and n d.f., 

6 
A 2  - 
0 - 2 P i z i  

i - 1  
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IV, Estimating the Mean of a ~Wistribution 
Using Quanfiles 

Estlrnatmg the mean of a x' distribution is equivalent 
to estlrnatlng the number of d.f., since E (x) = n. The 
quantnle estrrnators of n will be constructed on an entirely 
drfferent basrs than was used for estimating a2 in the 
preceding section. If one looks at the entries in Table 7 
oi Ref 8, whch gwes the values of the probability inte- 
g a1 ol the x- distribution for n = 1(1)30(2)70, one ob- 
selves that the median, the quantile of order 0.5, falls 
between n - 1 and n for all values of n listed. Thus, a 
slrnple one-quantile estimate of n can be obtained by de- 
telmrnang the samplie median, and if it falls between I - 1 
dad 1, take b 2s 2 More formally, the estimator would be 

where [x] denotes the greatest integer sx. 

It is useful to establish a criterion for deciding how 
"good" one estimator is as compared with another; we 
wi19 therefore use as a criterion the probability that % = n. 
111 order to compute this probability, we first determine 
the mean and variance of n , and then we have 

prob (% = n) = prob (n - 1 7 n'" n) 

which can easily be computed by assuming the asymptotic 
n~rmali ty of nr. . 

The moaneats of % are computed as follows: 

02 m 

E j 6 )  = 2 jprob($= j) = j p r o b ( j - 1 7 n " ; < j )  
7 =: j=1 

,w m 
E(%') = 2 j2prolO(G= j) = 2 j2prob(i- 1 7 n i B 7 j )  

j = l  j=1 

var ($1 = E <G2) - [ E  (%)I2 

Because 04 the assumption that n '  is normal, if we 
clioose that quantile which, for a given value of n, 
E (n  ) = n - 0.5, we are likely to get a better estimator 
tlian that usnng the median. However, this reasoning is 
complicated by the fact that the optimum order of the 
quantiie for one value of n is not necessarily optimum for - 
another value, and. in the absence of any knowledge con- 
cerning the value of n, we must specify the order to be 
used whatever n happens to be. Nevertheless, it turns 
out that by using p = 0.5085, the order for which 
E (n ) = 12 - 0.5 (from which it follows that E (2) = n) 
for n = 30, we obtain results that are slightly better for 
ail values of n than those obtained by using p = 0.5. 

Table 6 gives the results for p = 0.5085 and n = 1(1)5(5)70. 
Included in the table is the probability that 6 will differ 
from n by at most one. Column 6 gives the prob (6 = n) 
for p = 0.5. It should be emphasized that in all cases a 
sample size of m = 100 was assumed and that the prob- 
abilities in the table apply only for this sample size. It can 
be seen from the table that for no value of n does E (n) 
differ substantially from n. 

In general, the two most common statistics used for 
estimating the mean of a distribution are the sample mean - 
x and the M.L. equation. Sometimes the estimators from 
these two statistics coincide, but in this case they do not. 
In order to compare the quantile estimators with those 
obtained from Z and the M.L. equation, the following 
procedures were adopted. 

In the case of 3, we took as the estimate of n 

- 
n = the nearest integer toT 

Then, because of the large sample size (m = loo), we 
assumed that Z is normal, with mean n and variance 2n/m 
and computed prob (5 = n) = prob (n - 0.5 7 ?i;? n + 0.5) 
a n d p r 0 b ( n - 1 ~ Z 7 n + l ) = ~ r o b ( n - 1 . 5 7 ? ? 7 n + 1 . 5 ) .  

To compute the probability that the M.L. estimator of 
n is equal to n, one has the following: 

1 m m 

L, = x:n/2)-1 exp (-- 2 xi,' 
i = l  

The M.L. estimator of n is taken to be that positive integer 
for which In L, is a maximum. Denoting the M.L. esti- 
mate of n by e, the prob (a = n) is equivalent to the 
probability that In L, is greater than both In L,-, and 
In L,,,. This is the same as 
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Table 6. Probabilities associated with estimating the mean (d.f.1 of a XVistribution using one quantile, 

the sample mean, and the M.L. estimator 

A - n - [r (p ) ]  + 1 = [n'] i- 1 - _  n - nearest integer to Z 
h- n - M.L. estimate 
m = 100 

Assuming that 

is normal, the mean and variance of lnxi were computed 
and used to find the prob (e = n). The results for these 
estimators are also given in Table 6, in which a proba- 
bility of one means that the actual probability was 
>0.9999. 

meet this condition and then optimizing for some inter- 
mediate value of n = n, under the constraint that 
E (n:) = no - 0.5. Good results were obtained with this 
procedure when an estimator was desired which was to 
be used for all possible values of n. The choice of n,, = 30 
was dictated by the fact that prob (% = a), even when only 
one quantile is used, is quite large fair small ~ralues of c, 
but is small for relatively large values of n, so that ~ h -  
seems more important to try to increase this probability 
for large values of n even if by doing so it is degraded 
somewhat for small values. 

The ideal estimator of n using more than one quantile in some practical situations, it may be known 
for, say, n = n, would be of the form 

a 7 n 7 b. In this case, optimization for some value of n 

where the pi and pi were selected so as to maximize 
prob (n, = n,). However, if no restraint were placed on 
the value of E (n;), this method of choosing the Pi and pi 
would give very poor results even for values of n close to 
n,. In order for an estimator to be of practical value over 
the entire range of values of n, it is essential that E (n*) 
should lie between n - 1 and n for all values of n, prefer- 
ably as close to n - 0.5 as possible. This can best be 
accomplished by first choosing values of Pi and pi which 

in the interval (a, b) will give a better estimate than the 
one designed for all values. Therefore, estimators which 
have been optimized for values of n other than n = 3.0 
will also be given. 

A simple estimator of n using two quantiles, given by 

meets the requirement n - 1 < n:' < n for all values of n 
and is a better estimator than the o p ~ m u m  one-pantile 
estimator for n > 4. However, optimizing with respect to  

JPL TECHNICAL REPORT 32- 1532 11 



p, and p2 and keeping PI = @, = 0.5 for n = 30 results Table 7. Probabilities associated with estimating the 
i;4 the estimator mean (d.f.1 of a Xdistribution using two quantiles 

which is a better estimator than 6 for all values of n and 
better than the one-quantile estimator for n > 2. Table 7 
lists the pertinent details associated with $30. 

Optimization wit17 respect to the pi as well as the pi 
for n = 30 results ,iua prob (6 = n )  = 0.44290 for n = 30 
as compared to 0,44288 for the same probability when 
I* n is used. The improvement is so insignificant that it is 
not worthwhile considering. 

Optimization for n = 10 gives the following: 

prob (GI, = n )  = 0.7016 for n = 10 

Optimization for n = 4 also results in 

p, = 0.2384 @, = 0.4754 

p, = 0.7270 @? = 0.5087 

For these values, 2 is an excellent estimator for n ? 10 
and, in fact, is a better estimator than the optimum two- 
quantile estimator for all values of n. Keeping @, and P, 
fixed and optimizing with respect to the pi for n = 30 
gives the estimator 

n 

1 
2 
3 
4 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 

prob (G4 = n) = 0.9177 for n = 4 G3, = 10.25 ( z  (0.1327) + z (0.8575)) + 0.5 z (0.4846)] + 1 

By comparing the above probabilities with the corre- which is better than f i  for > Optimization for = 
sponding ones given in Table 7 ,  it can be seen that fi, and = gives the following: h and n,, should be used only for values of n close to 4 
and 10, respectively, when two quantiles are used to 

A 
estimate n, n, = 10.25 ( z  (0.08524) f z (0.8585)) + 0.5 z (0.4537)] + 1 

rn = 100 
A - n - [0.5 (z (0.2643) + r (0.7280))] + 1 = [n'] + 1 

To estimate n using three quantiles, we considered an 
h,, = [0.25 ( z  (0.1207) + z (0.8577)) + 0.5 z (0.4726)] + 1 

E ln*) 

0.6602 
1.6087 
2.5588 
3.576 1 
4.5678 
9.5441 

14.5295 
19.51 81 
24.5085 
29.50 
34.4923 
39.4851 
44.4785 
49.4722 
54.4663 
59.4607 
64.4553 
69.4501 

eh;timator of the form 

2 = [p, (z, + 2 3 )  + P,z,] + 1 

and, to start with, put 

Prob 
( f i = n )  

0.9976 
0.9775 
0.9427 
0.901 3 
0.8598 
0.6978 
0.5975 
0.5298 
0.4806 
0.4429 
0.41 27 
0.3880 
0.3672 
0.3494 
0.3339 
0.3203 
0.3083 
0.2975 

E ($1 

1.0024 
2.0209 
3.0395 
4.0493 
5.0529 

10.0432 
15.0294 
20.01 81 
25.0085 
30.00 
34.9923 
39.9851 
44.9785 
49.9722 
54.9663 
59.9601 
64.9553 
69.9501 

Optimization with respect to the Pi as well as the pi 
produces no significant improvement, even for the values 
of n for which the optimization was carried out. Hence, 

- A -  Table 8 gives prob ( n  = n )  and prob ( n  - 1 < n < n + 1) 
only for the above four estimators. 

Prob 
( n - l < $ 7 n + l )  

1 .O 
1 .O 
1 .O 
1 .O 
1 .O 
0.9980 
0.9880 
0.9697 
0.9468 
0.92 1 8 
0.8966 
0.8719 
0.8482 
0.8257 
0.8045 
0.7846 
0.7658 
0.7481 

p,  = 0.25 p, = 0.25 For the estimator of n using four quantiles, given by 

A n = 10.25 ( z  (0.2) + z (0.4) + z (0.6) + z (0.8))] 

+ 1 = [n*] + 1 
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Table 8. Probabilities associated with estimating the mean (d.f.1 of a Xdistribution using three quantiles 

Prob 
tfilo = 10) 

Prob 
In- 175?107n  f 1) 

Prob 
($4 = n) 

Prob 
( W  - a 7 f i 7 n  + I 1  

E (n") is approximately n = 0.4 for all values of n > 1. 
Holding the Pi fixed at 0.25 and optimizing with respect 
to the p ,  for n = 30, 10, and 4 gives the estimators 

A 
n,, = [ 0 . E  ( z  (0.1277) + z (0.3618) + z (0.6069) 

+ z (0.8590))] + 1 

A 
n,, = 10.25 ( z  (0.1139) + x (0.3460) + x (0.5976) 

+ z (0.858l))l + 1 
A 
n, = [0.25 ( z  (0.07487) + z (0.3167) + z (0.5847) 

+ z (0.8580))l + 1 

Table 9 lists prob (2 = n )  and prob ( n  - 1 7 $7 n + 1)  
for the above four estimators. 

For the four-quantile estimator of the form 

"r n - [ P I  ( z ,  + z,) + P ,  ( z ,  + z3)l + 1 

optimization with respect to both Pi and pi for 11 = 30, 
10, and 4 gives the following: 

2, = [0.1944 ( z  (0.0962) + z (0.8875)) + 0.3072 ( z  (0.3288) 

+ z (0.6289))l + 1 

prob (Go = n )  = 0.4692 for n = 30 

A 
n:, = 10.1968 ( z  (0.0868) + z (0.8857)) + 0.3079 ( z  (0,3082) 

+ z (0.6166))l + 1 

prob (2, = n )  = 0.7349 for n = 10 

Ar n, - - [0.1871(z (0.0381) + z (0.8927)) + 0.3111 (Z (0.2733) 
+ z (0.6130))l + 1 

prob (2 = n) = 0.9407 for az = 4 

To estimate n using five quantile:~, we first form the 
estimator 

where p,  = j/6, j = 1,2, . . . , 5  and ,@, = 0.125, P- = 0.5. 

Fixing PI and p, and optimizing with respect to the p, 
for n = 30 and n = 10 gives estimators which are not as 
good as the comparable ones using four quantiles. OpE- 
mization for n = 4 does give results that compare favor- 
ably with the estimator using four quantiles Fixing tke 
p, and optimizing with respect to the p ,  for n = 30 gives 
the following estimator, which is better thas, G?,, using 
four quantiles for n 5 10: 

A 
n,, = [0.208 (2,  + 2, + z,  + z5)  + 0.163~ (3 ) ]  + I 
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Table 9. Probabilities associated with estimating the mean (d.f.1 of a X' distribution using four quantiles 

Prob 
( f i 4  = nl 

Prob 
( n - - 1 ? . F i 1 7 n + l  

For p, = 0.208, P, = 0.163, and optimizing with respect 
to the p,  for n = 30 gives the following: 

A7 n,, = iO.208 (x (0.1101) + z (0.3075) + z (0.6745) 

+ z (0.8844)) + 0.1632 (0.4894)] + 1 

pro$ (& = n )  = 0.4724 for n = 30 

-A- 
Table PO presents prob (6= n )  and prob ( n  - 1 < n < n + 1) 
for G, 2 3 ( ) ,  G,, 

The six-quantile estimator of n, given by 

was first constructed, where p, = j/7, i = 1,2, . . . ,6. 

Then, optimizing with respect to the pi for n = 30,10,4 
gave 

n,, - - ( z  (0.06856) + z (0.2169) + z (0.3802) -[i 

-A- Table 11 gives prob (6 = n)  and prob ( n  - 1 < n < n + 1) 
for the above four estimators. 

A comparison between the probabilities associated with 
the quantile estimators given in Tables 6-11 and those 
associated with the M.L. estimator indicates that very 
little can be gained by using more than six quantiles. 
More important, perhaps, is the decision as to which esti- 
mator to use. The tables were designed to aid the user 
as much as possible in making this decision. Of particular 
significance, we believe, is the high probability, even for 
large values of n and a small number of quantiles, that 
the estimate will differ from the true value of n by no 
more than one. One should also bear in mind that a sam- 
ple size of 100, as was assumed in the above analysis, is by 
no means large when quantiles are being considered in 
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Table 10. Probabilities associated with estimating the mean (d.f.1 of a X 2  distribution using Five quantiles 

Prob 
(fi = n) 

Prob- I ( n - l Z G < n + , r  
Prob I 830 = nl 

Prob- 

Table 11.  Probabilities associated with estimating the mean Id.f.1 of a x2 distribution using six qasantiles 

Prob 
(9 = n) 

Prob 
(n - 1 <Zi?n + 11 

Prob 
6 s  = nl 

Prob- 
( n - l 7 & < n + l l )  

Prob 

0.9314 
0.9146 
0.9029 
0.8887 
0.8697 
0.7433 
0.6345 
0.5545 
0.4950 
0.4492 

Prob- 
( n - l ? & 0 < n + 1 )  

Prob 
($4 = nl 

0.9594 
0.9653 
0.9655 
0.9453 
0.9016 
0.6098 
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order to effect data compression of space telemetry, and 
the larger the sample size, the less becomes the probability 
of error. 

V, Estimating n and a' Using Quantiles When 
Neither is Known 

In Section 111, we constructed quantile estimators for 
mi when n is assumed to be known, and in Section IV, we 
described quantile estimators for n when, in effect, u2 is 
assumed to be equal to one. But suppose we know neither 
of these parameters and would like to estimate them using 
cjuantiles. To accomplish this, we will first construct 
k-q-kiiantile estimators of the mean nu2 for k = 2(1)6. Then, 
for k = 4 and 6, vve will describe estimators of n using 
the same q=4es as were used to estimate nu?, and then 
take C' = na2/A as the estimate for u2. 

For a given value of n, say n = n,, if we multiply by 
n the coeiacients of the k-quantile estimator of u2 for 
n = n, given in Section 111, we then have the optimum, 
~lnbiased estimator of n,u2, the mean of a x2 distribution 
with a scale factor and n, d.f. However, n is unknown, 
and since we must use the same estimator no matter what 
n happens to be, th~e question then becomes whether we 
caw find a value of I$, such that the estimator obtained in 
this way mill be adequate for all or most of the values of 
n, in the sense that the bias will be small and the efficiency 
remain high for n # n,. Estimators of nu2 were constructed 
using this method by letting n, = 20, and are given by 

Table 12 presents the normalized expected values and 
efficiencies of the (estimators. The efficiencies are given 
relative to the sample mean, which has a variance of 

2nu4/m. It can be seen that the bias of the estimators is 
quite small for n > 2, and for k = 6 the bias is not exces- 
sive even for n = 1 and 2. The high efficiencies shown for 
n = 1 and 2 are not too meaningful because they are due 
in part to the nature of the bias of the estimators. 

Now, given that we have used, say, the above six- 
quantile estimator of nu2, we would have immediately 
available to us the values of six sample quantiles ~ i ,  

i = 1, . . .A, 6, of specified orders pi and the calculated 
estimate 1Za". If we define 

each 2: can be considered as being approximately equal 
to the sample quantile of order pi of a set of sample values 
taken from a population with the distribution associated 
with the random variable y = x/n, where x has the x2 
distribution with n d.f. The density function associated 
with this distribution is given by 

The problem now is to estimate n using the z!,, the values 
of which are assumed to be independent of u2. A some- 
what unusual method will now be proposed for doing this. 

Defining S, as 

we calculate intervals (a,, b,) for n = 1(1)60, where 

The estimate of n can now be taken as 2 = t if S, falls 
in the interval (at, bt) for t < 60, and if S, < b,,, n 7 60. 
In order to estimate n in this manner, a table of intervals 
(a,, b,) is required and will be given. But in order to 
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Table 12. The normalized expected values and efficiencies of k-quantile estimators of the mean, ne2, 
of the X2 distribution with a scale factor and n d.f., for k = 2,3,4,5, and 6 

k = 2  k = 3  k = 4 k = 5  
n A A A h h A A - h 

E (>)/noZ I Eff (2) E ( 2 ) l n d  1 Eff ( 2 )  E ( ~ l / n d  Eff ( 3 )  E (no2)/no2 1 Eff (3) 

eliminate the need for consulting a table, the following n: = 326.9103 - 790.1756S, 4- 712.509SSg 
procedure can be adopted. Define n:,n;,n';: as - 226.30978; 

n; = 60.8422 - 37.77678, + 9.580783 - 1.1090s; If 1.5309 7 S, < 3.9452, compute n:. If 0.9720 < S, < 
+ 0.04811s~ 1.5309, compute n;. If 0.6097 7 S, < 0.9720, compute nC. 

Then 6 is defined as in the six-quantile case except that 
n; = 139.0614 - 127.78943, + 44.0720s; - 5.3841s; here, if S, 7 3.9452, 6 = 1. 

n';: = 325.8605 - 462.3892Sn + 244.83338; - 45.66353; Table 13 lists the a, and b, for estimatillg n using four 
and six quantiles. Table 14 gives the values of n' when 

If 2.6135 7 S. < 6.9285. compute n:. If 1.6555 7 S, < the appropriate n:, is evaluated at E (s.), 
2.6135, compute na. If 1.0341 7 S, < 1.6555, compute nz. 

A 

Then & = nearest integer to n: for the app~opria~e value Finally, given the estimates and a from the same 
of i. set of quantiles, one can take as the estimate 06" 5' 

If S, 7 6.9285, 6 = 1. n: is a quartic such that 
n: (E (S,)) = n for n = 1,2,4,7,10; n; and n: are cubics 
such that n; (E (S,)) = n, for n = 10,13,17,20 and 
n: (E (S,)) = n, for n = 20,30,40,50. 

When the same calculations were performed for esti- 
mating n using four quantiles and defining S, as 

the following results were obtained: 

VI. Estimating the Pararneters of Two, Distributions 
Related to the x2, Using Quantiies 

If the horizontal and vertical deviations x, and x, of a 
shot from the center of the target are independent band 
normal (0, u2), the distance x = v m  from the center 
will have the density function 

n; = 139.7787 - 219.19823, + 128.940683 Thus, x is the square root of a random variable that has 
- 26.86813: the X"istribution with a scale factor and two d.f. 
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Table 13. Values of a, and b, to be used in estimating n, the number of d.f. of a ~Vistribution with a scale factor, 
using k quantiles, fork = 4,6, when n and r2 are unknown 
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Table 14. n" evaluated a t  E (S,) for 
n = 1,2, . . . ,60 and k = 4 , 6  

The mean and variance of this distribution are 

var ( x )  = 2 - - = 0,4292,,2 ( 3 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

h 
n = 

and the mode is at x = a. 

k = 4  

n* (E (Sn)l 

30.9801 
31.9657 
32.9567 
33.9536 
34.9553 
35.9595 
36.9674 
37.9773 
38.9883 
40.0 
41.0121 
42.0218 
43.0304 
44.0376 
45.0406 
46.0406 
47.0379 
48.0302 
49.0169 
50.0 
50.9776 
52.1751 
52.9156 
53.8741 
54.8283 
55.7752 
56.7166 
57.6498 
58.5767 
59.4963 

The M.L. estimator Z of u and its asymptotic variance 
are given by 

k = 4 
n* (E ISn)) 

1 .O 
2.0 
3.0824 
4.0 
4.9603 
5.9700 
7.0 
8.0249 
9.C283 
10.0 
11.0224 
12.01 35 
13.0 
13.9914 
14.9899 
15.9937 
17.0 
18.0051 
19.0059 
20.0 
20.9843 
2 1.9574 
22.9177 
23.8639 
25.1696 
26.1 328 
27.0945 
28.0585 
29.0264 
30.0 

nearest integer 

k = 6  

n* (E (Sn)l 

30.9796 
31.9653 
32.9571 
33.9505 
34.9554 
35.9583 
36.9650 
37.9775 
38.9864 
40.0 
41.0088 
42.0224 
43.0316 
44.0331 
45.0383 
46.0378 
47.0365 
48.0246 
49.01 57 
50.0 
50.9753 
51.9484 
52.9089 
53.8730 
54.8211 
55.7703 
56.7098 
57.6482 
58.5744 
59.4869 

u2 
var (5) = - 

4m 

The unbiased estimator a":, obtained by using the sam- 
ple mean, and its variance are given by 

k = 6  

n* (E (5,)) 

1 .O 
2.0 
3.0923 
4.0 
4.9573 
5.9683 
7.0 
8.0263 
9.0295 
10.0 
11.0226 
12.0138 
13.0 
13.9905 
14.9897 
15.9931 
17.0 
18.0051 
19.0067 
20.0 
20.9841 
2 1.9571 
22.9185 
23.8645 
25.1707 
26.1 324 
27.0947 
28.0558 
29.0264 
30.0 

to n* 

a2 
var (u*) = 0.2732 - 

m 

n 

3 1 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

so that the efficiency of a": relative to Z is 0.9149. 

Optimum asymptoticalIy unbiased k-quantile estimators 
of a of the form 

were constructed for k = 1, . . . ,6 by the same method 
used in Section 111 to obtain estimators for a'. The details 
will therefore be omitted. Table 15 lists the orders of the 
quantiles, the coefficients, and the spacings [,, which sep- 
resent E (z,,)/u. It  can be seen from the table that foi 
k > 3, the efficiencies of the quantile estimators are highea 
than that of a . 

Table 15. Optimum orders pi, the corresponding cceffi- 
cients pi and spacings Ci, and efficiencies of qeaantils 
estimators of the parameter a of the square soot of a X' 
distribution with a scale factor and two d.f. 
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If the components x,, x,, x, of the velocity of a molecule Table 16. Optimum orders pi ,  the corresponding coeffi- 
with respect to a system of rectangular coordinates are cients Pi and spacings Ci, and efficiencies of quantile 
independent and normal (0, u2), the velocity estimators of the parameter u of the square root of a X' 

distribution with a scale factor and three d.F. 

will have the density function 

with a mean and variance given by 

with the mode at x = u 

The M.L. estimator F and the estimator d; obtained 
fsoin the sample mean, and their variances, are given by 

u2 
var (Z) = - 

6m 

u2 
var (u*) = 0.1781 - m 

so that eE (o") = 0.9358. 

Optimum k-quantile estimators of u were constructed 
of the form 

tor k = 9, . . . ,6. Like Table 15, Table 16 lists the orders 
of the quantiles p,, the coefficients pi of the estimators, 
and the optimum spacings. For k > 4, the efficiency of 
the qtsantiiie estimators exceeds that of u". 

VII. Estirnating the Pararneters Using Real Data 

In order to generate m independent sample values that 
can be assumed to be taken from a population which has 
a X2 distribution with a scale factor and n d.f., the fol- 
lowing procedure was adopted. First, nm independent 
random numbers p,, p,, . . . , p,,, each uniformly dis- 
tributed over (0, l), were generated. Then the pairwise 
transformations 

33 

P4 
b'4 

3 4  

Pa 

f l s  
36 

PB 

P a  

38 

Eff 

yj+, = u sin (2xpj) - 2 In p,=, 

were performed, and it can be shown that the y i  are inde- 
pendent and N (0, u2). Finally, the transformation 

A -  a- $ P,zi, k =  1;..,6 
i -1 

0.6451 

provides the m sample values with the required distri- 
bution. 
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0.8179 

2.839 

0.8892 

2.421 

0.9750 
0.05434 
3.057 

0.9254 

2.169 

0.9264 
0.07904 
2.636 

0.9846 
0.03460 
3.226 

0.9464 

1.982 

0.8685 
0.08827 
2.371 

0.9509 
0.05544 
2.803 

0.9898 
0.02364 
3.361 

0.9596 



For n = 10, a' = 1, and m = 100, 25 sets of sample val- 
ues were generated. For each set, the optimum k quan- 
tiles were determined for k = 1,2, . . . ,6 and used to 
obtain estimates of U? m e  M.L. estimates were also com- 
puted. Denoting by $2 the average of the 25 estimates 
of using k quantiles, and by F2 the average of the 
25 M.L. estimates, the following results were obtained: 

where the numbers in parentheses denote the sample 
standard deviation of the estimates, given by 

When both a2 and n are unknovvn, estimates can be 
obtained using all the sample values by the method cf 
moments. One equates the first two sample ~noments, Z 
and s" with the corresponding popuIation moments and 
solves the two equations for n ancl 2. Thus, solving - 
x = nu2 and s2 = 2na4 gives Z2 = s2/23, "n = 2Z2/s2. 

For a2 = 1, m = 100, and n = 10,20,30, fifty sets of  
sample values were generated for each value of n. The 
estimators given in Section V using four and six quantiles 
were used to determine fi,, $2, A,, a n d 3  for each set of 
sample values. The estimates 7i and ;i2 were also corn- 
puted. The averages of the estimates as well as their sam- 
ple standard deviations are: 

For n = 10, 

For n = 10 and m = 100, 25 sets of sample values were 
generated for a x 2  distribution: For each set, the M.L. For n = 20, 

estimate E, n" = f and kk; k = 1, - . . ,6, the estimates - 
using k quantiles were determined. The results in terms 'ii = 20.20 (2.703) ;;a2 = 1.0144 (0.1440) 
of the number of times a particular estimate was obtained - - 
are as follows: % = 19.44 (3.176) $2 = 1.0478 (0.1636) 

For n = 30, 

- - 
For n = 20, the following results were obtained: A n, - - 30.16 (5.270) 3 = 1.0189 (0.1908) 

Sets of sample values were generated in order to esti- 
mate the mean na%f a x%stribution w7itl-r a scale factor 
when n and a b r e  unknown, using the sample mean 
and the k-quantile estimators given in Section V, for 
k = 2, . . . ,6; m = 100 and a2 = 1 in all cases. 

Let m, denote the number of sets of m sample iialanes 
generated for a given value of n. Let x denote the aver- 
age of m, estimates of nu2 using all the sample values, 
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- 
A 

and Gc the average of m, estimates using k quantiles, averages and the sample deviations of the estimates are 
Then, for n = 6 and m, = 25, as follows: 

- - 
where the nt~rnbers in parentheses again denote the sam- A a, - - 0.9930 (0.0501) $6 = 0.9982 (0.0537) 
p4e standard deviation of the estimates. 

The same statistics were determined for the square root 
of a x' distribution with a scale factor and three d.f.: 

For n = led and rn, = 85, 
- - 

- - - 
- A - u - 1.0028 (0.0501) & = 0.9985 (0.0548) 
"h = 10.071 (0.4705) nu2 = 10.108 (0.5011) - 
- 
A 

- 
- A 

2 = 1.005 (0.0494) G4 = 1.0059 (0.0534) 
no: = 10.162 (0.5710) nu; = 10.136 (0.5113) - - 

A - 
- - ul - 0.9985 (0.0704) G5 = 1.0017 (0.0499) 

For n = 20, and na, = 110, VIII. Conclusion 
- 
A - I t  can be seen that the efficiencies of the k-quantile esti- 

= 20.109 (0,5861) nag = 20.089 (0.5912) mators of given in Tables 15 are decreasing functions 
- 
A 

- 
- A - of n. Since the x2 distribution approaches the normal as 

= 20.114 (0.6577) nu; = 20.158 (0.6296) n -+ w , the limiting value of these efficiencies is the e 6 -  
- - 
A - A - ciency of the corresponding optimum k-quantile estimator 

nvJ = 20.968 (0.6157) nag = 20.108 (0.5955) of the mean of a normal distribution, as given in Refs. 1 
and 7. 

Although prob (2 = n) and prob (n - 1 7 2 7 n + 1) 
For n = 30 and m, = SO, 

- for the estimators 6 as defined in Tables 6-11 decrease as 
- - A - n increases, the rate of decrease for large n also decreases, 
x = 29,978 (0.6984) nag = 29.865 (0.7436) so that even for n > 70, 6 should give excellent results 
- - 
A A - when compared to the M.L. estimator and the estimate 
2 -- 29.868 ((4.8022) nu; = 29.954 (0.6910) obtained from the sample mean. 
- - 
A - A - 

S L O ~  = 29.952 (0.7415) nu2 = 29.904 (0.7296) The results of the Monte Carlo study with respect to 
the estimators of n and a' when neither are known show 
that, by comparison with the estimates obtained from all 

Fop O- = 1 and rn = 100, 25 sets of sample values were the sample values, the quantile estimators can be con- 
genelated from the square root of a x 3  distribution with sidered good estimators. However, the large sample stan- 

scale factor and two d.f. The M.L. estimate iT, the esti- dard deviation of the estimates again points up the im- 
mate a frola? the sample mean, and the k-quantile esti- portance of a large sample size in many areas of parameter 
mates a,,, F: - 1, . . ,6 were determined for each set. The estimation. 
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